

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 504-510 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208504510 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 504

Malicious Link Detector on Website: Review

*Muhammad Saidu Aliero
1
, Zulkifilu Muhammad

1,
Abdulrashid

Allami
1
, Basiru Umar Aliero

2
, Salisu Adamu Aliero

3
,

1
Department of ICT Science, Faculty of Engineering, Kebbi State University of Science and Technology Aliero,

Nigeria
2
Department of Guidance and Counseling, Faculty of Education, Kebbi State University of Science and

Technology Aliero, Nigeria.
3
University Library, Kebbi State University of Science and Technology Aliero, Nigeria.

msaidua2000@gmail.com

--

Date of Submission: 15-10-2020 Date of Acceptance: 15-11-2020

ABSTRACT: Malicious link is one of the most

common web-based application vulnerabilities that

can be invaded to redirect users from trusted web

application to malicious application result in

unauthorized access and unauthorized data

modification. Researchers have proposed many

methods to tackle this problem, however these

methods fail to address the whole problem of

malware injection attack, because most of the

approaches are vulnerable in nature, cannot resist

sophisticated attack or limited to scope of subset

particular malware type. In this paper we provide a

detailed background of malware, and discuss most

commonly used method by programmers to defend

against malware using analytical evaluation

approach lastly we conclude and recumbent future

improvements .

Keywords:Malicious link, web application, web

application security, web application vulnerably

dynamic approach, analytical evaluation

I. INTRODUCTION
Malicious URLs have been widely used to

mount various cyber-attacks including spamming,

phishing and malware. Detection of malicious

URLs and identification of threat types are critical

to thwart these attacks. Automatic security

assessment tools are used to automatically detect

existence of defect, weakness or security flaws that

can be exploited by potential attackers (MS Aliero

et al, 2015).

These tools provide automatic way of

security assessment either by examining the source

code of applications or through penetration testing.

Security assessment report published by Software

Administration, Network and Security and Institute

of Computer Security/FBI, show almost 500

computer security analyst concludes that 55% of

web penetration tester use automatic approach for

testing and evaluating effectiveness of their

applications (Antunes & Vieira, 2010).

This present a major concern that needs to

be investigated as web application is today home to

billions of users over the globe and Adversaries

have used the Web as a vehicle to deliver malicious

attacks such as phishing, spamming, and malware

infection. For example, phishing typically involves

using a fake website seemingly from a trustworthy

source to trick people to click a link that takes you

to a counterfeit webpage.

To address this challenge many researches

in academia and industries have been working on

malicious links detection typically through

inspecting link to detect their malicious content

(McAfee, 2011). Today, many malicious links are

found on the web. And because of the high rate of

joblessness in Nigeria, job seeking websites are

becoming popular as they are convenient and

economical. One can easily get a space with a

publisher such as Jobbeman.com and place adverts

for job vacancies. On the other hand, a lot of people

rely heavily on those websites to have information

about available job vacancies in other to apply.

Unfortunately this bless can also turn to a curse:

hackers and attackers have found web links to be

low- cost and highly effective means to conduct

malicious activities.

This research will focus on analytical

analysis on proposed solution to detect malicious

links this analysis would help administrator in

selecting the best tool in the market or research

who wants improve existing solutions.

II. EXISTING SOLUTION
Today’s age, it is almost mandatory to

have an online presence to run a successful venture.

As a result, the importance of the World Wide Web

has continuously been increasing especially in job

seeking websites.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 504-510 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208504510 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 505

Unfortunately, the technological advancements

come coupled with new sophisticated techniques to

attack and scam users in job seeking websites. Such

attacks include rogue websites that provide work

counterfeit goods, financial fraud by tricking users

into revealing sensitive information which

eventually lead to theft of money or identity, or

when installing malware in the user’s system.

This section represent review of the state-

of-the-art of malicious URL detection in literature.

The research specifically focus on the contributions

made for crawling activities used in detecting

malicious links. The work also present categories

of different various types of crawlers

representation used for creating the training data

for this task, and also categorize various learning

algorithms used to learn a good prediction model.

Most of common way by which user can be

compromised is through spreading compromised

URLs (or the spreading of such URLs forms a

critical part of the attacking operation) (Hong, J.

2012).

Compromised URLs that are used for

cyber-attacks are termed as malicious URLs. In

fact, it was noted that close to one-third of all

websites are potentially malicious in nature (Patil,

D. R., & Patil, J. B. 2015) demonstrating rampant

use of malicious URLs to perpetrate cyber-crimes.

2.1 Review on Malicious links detector

A Malicious URL or a malicious web site

hosts a variety of unsolicited content in the form of

spam, phishing,or drive-by-exploits in order to

launch attacks. Unsuspecting users visit such web

sites and become victims of various types of scams,

including monetary loss, theft of private

information (identity, credit-cards, etc.), and

malware installation.Popular types of attacks using

malicious URLs include:Drive-by Download,

Phishing and Social Engineering, andSpam (Cova,

M., Kruegel, C., & Vigna, G. 2010). Drive-by-

download (Heartfield, R., & Loukas, G.

2016)refers to the unintentionaldownload of

malware upon just visiting a URL. Such attacksare

usually carried out by exploiting vulnerabilities in

pluginsor inserting malicious code through

JavaScript.

 Phishing and Social Engineering attacks

(OpenDNS, L. L. C. 2016) trick the users into

revealingprivate or sensitive information by

pretending to be genuineweb pages. Spam is the

usage of unsolicited messages forthe purpose of

advertising or phishing. These types of

attacksoccur in large numbers and have caused

billions of dollars’ worth of damage every year.

Effective systems to detect such malicious URLs in

a timely manner can greatly help to counter large

number of and a variety of cyber-security threats.

Consequently, researchers and

practitioners have worked to design effective

solutions for Malicious URL Detection. The most

common method to detect malicious URLs

deployed by many antivirus groups is the black-list

method. Black-lists are essentially a database of

URLs that havebeen confirmed to be malicious in

the past. This database iscompiled over time (often

through crowd-sourcing solutions, e.g. PhishTank

(Sinha, S., Bailey, M., & Jahanian, F. 2008) as and

when it becomes known that aURL is malicious.

Such a technique is extremely fast due to asimple

query overhead, and hence is very easy to

implement.Additionally, such a technique would

(intuitively) have a verylow false-positive rate

(although, it was reported that oftenblacklisting

suffered from non-trivial false-positive rates

(Garera, S., Provos, N., Chew, M., & Rubin, A. D.

2007).

However, it is almost impossible to

maintain an exhaustive listof malicious URLs,

especially since new URLs are generatedevery day.

Attackers use creative techniques to evade

blacklistsand fool users by modifying the URL to

“appear” legitimatevia obfuscation. (Garera, S.,

Provos, N., Chew, M., & Rubin, A. D. 2007)

identified four types ofobfuscation: Obfuscating the

Host with an IP, Obfuscating theHost with another

domain, obfuscating the host with large hostnames,

and misspelling. All of these try to hide the

maliciousintentions of the website by masking the

malicious URL.Recently, with the increasing

popularity of URL shorteningservices, it has

become a new and widespread

obfuscationtechnique (hiding the malicious URL

behind a short URL) (Garera, S., Provos, N., Chew,

M., & Rubin, A. D. 2007),Alshboul, Y., Nepali, R.,

& Wang, Y. 2015).

Once the URLs appear legitimate, and

users visit them,an attack can be launched. This is

often done by maliciouscode embedded into the

JavaScript. Often the attackers willalso try to

obfuscate the code so as to prevent signature

basedtools from detecting them. Attackers use

many other simpletechniques to evade blacklists

including: fast-flux, in whichproxies are

automatically generated to host the web-page;

algorithmicgeneration of new URLs; etc.

Additionally, attackerscan often simultaneously

launch more than one attack, whichalters the

attack-signature, making it undetectable by tools

thatfocus on specific signatures. Blacklisting

methods, thus havesevere limitations, and it

appears almost trivial to bypass them,especially

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 504-510 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208504510 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 506

due to the fact that blacklists are useless for

makingpredictions on new URLs.

To overcome these issues, in the last

decade, researchershave applied machine learning

techniques for Malicious URLDetection (Patil, D.

R., & Patil, J. B. 2015), Chhabra, S., Aggarwal, A.,

Benevenuto, F., & Kumaraguru, P. 2011),, (Ma, J.,

Saul, L. K., Savage, S., & Voelker, G. M. 2009 and

(Hoi, S. C., Wang, J., & Zhao, P. 2014. Machine

Learning approaches,use a set of URLs as training

data, and based on the statisticalproperties, learn a

prediction function to classify aURL as malicious

or benign. This gives them the ability togeneralize

to new URLs unlike blacklisting methods.

Theprimary requirement for training a machine

learning modelis the presence of training data. In

the context of maliciousURL detection, this would

correspond to a set of large numberof URLs.

Machine learning can broadly be classified into

supervised, unsupervised, and semi-supervised,

which correspond to having the labels for the

training data, not having thelabels, and having

labels for limited fraction of training data. Labels

correspond to the knowledge that a URL is

maliciousor benign.

After the training data is collected, the

next step is toextract informative features such that

they sufficiently describethe URL and at the same

time, they can be interpretedmathematically by

machine learning models. For example,simply

using the URL string directly may not allow us

tolearn a good prediction model (which in some

extreme casesmay reduce the prediction model to a

blacklist method).

Thus, one would need to extract suitable

features based on someprinciples or heuristics to

obtain a good feature representationof the URL.

This may include lexical features

(statisticalproperties of the URL string, bag of

words, n-gram, etc.), host basedfeatures (WHOIS

info, geo-location properties of thehost, etc.), etc.

These features after being extracted have to be

processed into a suitable format (e.g. a numerical

vector), suchthat they can be plugged into an off-

the-shelf machine learningmethod for model

training.

The ability of these features toprovide

relevant information is critical to subsequent

machinelearning, as the underlying assumption of

machine learning(classification) models is that the

feature representations ofthe malicious and benign

URLs have different distributions.Therefore, the

quality of feature representation of the URLs

iscritical to the quality of the resulting malicious

URL predictivemodel learned by machine

learning.Finally, using the training data with the

appropriate featurerepresentation, the next step in

building the predictionmodel is the actual training

of the model. (Sahoo, D., Liu, C., & Hoi, S. C.

2017)

There are plentyof classification

algorithms that can be directly used over

thetraining data (Naive Bayes, Support Vector

Machine, LogisticRegression, etc.). However, there

are certain properties ofthe URL data that may

make the training difficult (both interms of

scalability and learning the appropriate concept).

Forexample, the number of URLs available for

training can bein the order of millions (or even

billions).

As a result, thetraining time for traditional

models may be too high to bepractical.

Consequently, Online Learning (Canali, D, et al

2011), March) a family of scalable learning

techniques have been heavily applied forthis task.

Similarly, for this task, URLs are represented

usingthe bag-of-words (BoW) features. These

features basicallyindicate whether a particular word

(or string) appears in aURL or not - as a result

every possible type of word that mayappear in any

URL becomes a feature. This representationmay

result in millions of features which would be very

sparse(most features are absent most of the time, as

a URL willusually have very few of the millions of

possible words presentin it). Accordingly, a

learning method should exploit thissparsely

property to improve learning efficiency and

efficacy.

Despite the promising generalizing ability

of machine learningapproaches, one potential

shortcoming of these approachesfor malicious URL

detection may be their resource intensivenature

(especially while extracting features that are non-

trivialand expensive to compute), reducing their

practical value whenrequiring real-time security

assurance compared to blacklistingmethods.

2.2 Review onWeb Application Crawling

In this section, the study provides a brief

introduction to crawling and review the previous

works in the literature. Furthermore, the section

alsoemphasis on web crawling activities which is

one of the major phases in detection of malicious

links in web applications together with the

relationships among document groups; more

specifically, classes, to improve the performance of

crawling activities. In particular, the study consider

factors that the linked to low coverage of crawling

activities by most of the previously proposed

crawlers.

With the very fast growth of WWW, the

quest for locating the most relevant answers to

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 504-510 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208504510 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 507

users’ information needs becomes more

challenging. In addition to general purpose Web

directories and search engines, several domain

specific Web portals and search engines also exist,

which essentially aim to cover a specific

domain/topic (e.g., education), product/material

(e.g., product search for shopping), region (e.g.,

transportation, hotels etc. at a particular country

Chakrabarti,(S., Van den Berg, M., & Dom, B.,

1999) or media/file type (e.g., mp3 files or personal

homepages (Pant, G., & Srinivasan, P. 2006).

Such specialized search tools may be

constructed manually-by also benefiting from

possible assistance of the domain experts or

automatically. Some examples of the automatic

approaches simply rely on intelligent combination

and ranking of results obtained from traditional

search tools (just like meta search engines),

whereas some others first attempt to gather the

domain specific portion of the Web using web

crawling techniques and then apply other

operations (e.g., information extraction, integration,

etc.).

(Chakrabarti, S., Van den Berg, M., &

Dom, B.,1999)were the first to propose a soft-focus

crawler, which obtainsa given page’s relevance

score (i.e., relevance to the target topic) from a

classifierand assigns this score to every URL

extracted from that page. We refer tothis soft-focus

crawler as the baseline focused crawler. In a more

recent work, they have proposed using a

secondaryclassifier to refine the URL scores and

increase the accuracy of this initial softfocused

crawler (Chakrabarti, S., Punera, K., &

Subramanyam, M. 2002). An essential weakness of

the baseline focused crawler is its inability to

modeltunneling; that is, it cannot tunnel toward the

on-topic pages by following a pathof off-topic

pages(Barfourosh, A. et al, 2002)..

Two other remarkable projects, the

context-graph-basedcrawler (Diligenti, M. et al,

2000) and Cora’s focused crawler (A. Mccallum,

1999) achieve tunneling.The context-graph based

crawler [56] also employs a best-search heuristic,

butthe classifiers used in this approach learn the

layers which represent a set ofpages that are at

some distance to the pages in the target class

(layer).

Morespecifically, given a set of seeds, for

each page in the seed set, pages that directlyrefer to

this seed page (i.e., parents of the page) constitute

layer-1 train set, pagesthat are referring to these

layer-1 pages constitute the layer-2 train set, and

soon; up to some predefined depth limit. The

overall structure is called the contextgraph, and the

classifiers are trained so that they assign a given

page to oneof these layers with a likelihood score.

The crawler simply makes use of

theseclassifier results and inserts URLs extracted

from a layer-i page to the layer-i queue, i.e., it

keeps a dedicated queue for each layer. URLs in

each queue arealso sorted according to the

classifier’s score. While deciding the next page

tovisit, the crawler prefers the pages nearest to the

target class that is, the URLspopped from the queue

that correspond to the first nonempty layer with

thesmallest layer label. This approach clearly

solves the problem of tunneling, butit requires

constructing the context graph, which in turn

requires finding pageswith links to a particular

page (back links). In contrast, our rule-based

crawleruses forward links while generating the

rules and transitively combines these rulesto

effectively imitate tunneling behavior.

 In particular, reinforcement learning is

used in CORA’s focused crawler. CORA’scrawler

basically searches for the expected future reward

by pursuing a pathstarting from a particular URL.

The training stage of classifier(s) involves learning

the paths that may lead to on-topic pages in some

number of steps.

 In contrast, our rule-based crawler does not need to

see a path of links during training, but constructs

the paths using the transitive combination and

chaining of simple rules of length 1.

The focused crawler of Web Topic

Management System (WTMS) fetches onlypages

that are close (i.e., parent, child, and sibling) to on-

topic pages (Mukherjea, S. 2000). InWTMS, the

relevancy of a page is determined by only using IR-

based methods.In another work, Aggarwal et al.

attempt to learn the Web’s linkage structure

todetermine a page’s likelihood of pointing to an

on-topic page. However, theydo not consider

interclass relationships in the way we do in this

study. Bingo!Is a focused-crawling system for

overcoming the limitations of initial trainingby

periodically retraining the classifier with high

quality pages (Diligenti, M., 2000).

Recently,Menczer et al. present an

evaluation framework for focused crawlers and

introducean evolutionary crawler (Sizov, S.,

Graupmann, J., & Theobald, M. 2003). In another

work, Pant and Srinivasan provide asystematic

comparison of classifiers employed for focused

crawling task (Menczer, F., Pant, G., & Srinivasan,

P. 2004).

Two recent methods that exploit link

context information are explored in (Menczer, F.,

Pant, G., & Srinivasan, P. 2004). In the first

approach, so called text-window, only a number of

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 504-510 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208504510 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 508

words around eachhyperlink is used for

determining the priority of that link. The second

one, tagtreeheuristic, uses the words that are in the

document object model (DOM) treeimmediately in

the node that a link appears, or its parents, until a

threshold issatisfied.

In (Craven, et.at 1998) we proposed a

similar but slightly different technique, so-

calledpage segmentation method, which fragments

a Web page according to the use ofHTML tags.

Focused crawling paradigm is employed

in a number of prototype systems for gathering

topic/domain specific Web pages. For instance, in

(Pirkola, A. 2012), focused crawling is used for

obtaining high quality pages on a mental health

topic (depression).In (Pant, G., & Srinivasan, P.

2006), a prototype system is constructed that

achieves focused crawling and multilingual

information extraction on the laptop and job offers

domains.

Black Box Testing Scanner (BBTS) was

developed in (Chen and Wu, 2010) to find SQL

injection vulnerabilities using dynamic approach.

The BBST uses state aware crawler to identify

forms and links with injection parameters to In this

approach the authors’ uses state aware scanner that

will able to recognized webpage that contain

injection parameter.

This improvement enable scanner to save

time by not downloading pages that does not

contain injection parameter and also avoid false

positive that result in from attacking pages that

does not have injection parameter. Author

experimental evaluation show the scanner achieved

100% accuracy on tested application in short period

of time. However author did not evaluate his

approach with available existing technique to

evaluate both accuracy and efficiency of the

proposed scanner.

Viper is black box scanner proposed in

(Ciampa et al., 2010) that detects SQLI

vulnerability through dynamic testing. Scanners

that implement dynamic approach are required to

have different number of attacks type as well as

way of analyzing server response. Viper uses

different number of predefined attack pattern to

trigger hidden vulnerability in application but it is

capable of performing single analysis on server

response to attacks. Experiment shows that Viper

was able to carry successful attacks that trigger

blind SQL injection vulnerability but Viper was not

able to report it, this is because analysis was not

address to analyzed blind SQL injection

vulnerability.

Static Scanner was proposed in (Shar and

Tan, 2012) that detect vulnerable point by

characterizing input function into pattern of code

attributes. Static code attributes are collected from

backward static program slices of sensitive

program points, so that to mine both input

sanitization code patterns and input validation code

patterns, from such static code attributes. This

scanner uses vulnerabilities prediction model to

enable scanner to predict vulnerable code for SQLI

and cross site scripting (XSS) vulnerabilities.

Authors evaluated their scanner with different PHP

web-based application source code, which shows

the effectiveness of their approach. However their

approach can only be effective in PHP web-based

applications.

 4SQLi is the scanner that combines both

static and dynamic approach to detect SQLI

vulnerabilities (Appelt et al., 2014). 4SQLi uses a

single or multiple mutation operators of different

types that can be used as a single input parameter to

generate desired inputs which will use latter for

detecting subtle vulnerabilities that can only be

triggered with an input generated by combining

multiple mutation operators. For example, consider

an application that alters inputs by searching for

known attack patterns that can be generated using

one of the behavior-changing operators. To form a

successful attack, it is necessary to apply a

behavior-changing operator and then apply one or

more obfuscation operators.

III. DISCUSSION
This study presented explored existign

solutions on malicious link detector and result of

our analysis reveals that the existing solution faces

two common challenges. One is bypassing login

authentication; bypassing login application using

SQL injection attack is highly dependent on how

developer designed authentication query and type

of backend database used in target application.

Because it is possible single attack pattern that

bypass login application in mysql version 5 may

failed to bypass mysql version 5.1. A query that is

perfoming check on numbers of return is more

easier to bypass than query that is perfoming

checking on single rows returned. Therefore, our

malicious link detector perform brute force attack

on attempt to bypass login authentication since it

has no knowledge of knowing the type and version

database is using on backend application.

 Another challege faced by our malicious

link detector is inability to recognize maliciouslinks

underneath valid link. This is one of the reasons

why our malicios link detector failed to identify

any malicious link underneath valid link.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 504-510 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208504510 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 509

RECOMMENDATION
In short, the our recommendation on how to

improve the current state of art is as follows:

i. Enhancing crawler intelligence to perform full

indexing of links in target application even if

the page requires partial page refreshment.

ii. Enhancing crawler intelligence to recognize

the page as potential to malicious link attack as

long as link is directly commutating with

database and end users.

iii. Shaping of pattern used in tautology attaks to

limit the number of return record into one to

bypass the safety check applied by the

developer so as to bypass login application

even in the presence of the safety check.

iv. Updating database of SQL qeury related error

messages return by different database server

including Oracle, MySQL server and Sybase

so as to avoid false positive on platforms other

thant PHP applications.

REFERENCES
[1]. Antunes, Nuno, & Vieira, Marco. (2011).

Enhancing penetration testing with attack

signatures and interface monitoring for the

detection of injection vulnerabilities in web

services. Paper presented at the Services

Computing (SCC), 2011 IEEE International

Conference on.

[2]. Antunes, Nuno, & Vieira, Marco. (2012).

Evaluating and improving penetration

testing in web services. Paper presented at

the Software Reliability Engineering

(ISSRE), 2012 IEEE 23rd International

Symposium on.

[3]. Antunes, Nuno, & Vieira, Marco. (2015).

Assessing and Comparing Vulnerability

Detection Tools for Web Services:

Benchmarking Approach and Examples.

Services Computing, IEEE Transactions on,

8(2), 269-283.

[4]. Appelt, Dennis, Nguyen, Cu Duy, Briand,

Lionel C, & Alshahwan, Nadia. (2014).

Automated testing for SQL injection

vulnerabilities: an input mutation approach.

Paper presented at the Proceedings of the

2014 International Symposium on Software

Testing and Analysis.

[5]. Bandhakavi, Sruthi, Bisht, Prithvi,

Madhusudan, P, & Venkatakrishnan, VN.

(2007). CANDID: preventing sql injection

attacks using dynamic candidate evaluations.

Paper presented at the Proceedings of the

14th ACM conference on Computer and

communications security.

[6]. Bau, Jason, Bursztein, Elie, Gupta, Divij, &

Mitchell, John. (2010). State of the art:

Automated black-box web application

vulnerability testing. Paper presented at the

Security and Privacy (SP), 2010 IEEE

Symposium on.

[7]. Boyd, Stephen W, & Keromytis, Angelos D.

(2004). SQLrand: Preventing SQL injection

attacks. Paper presented at the Applied

Cryptography and Network Security.

[8]. Buehrer, Gregory, Weide, Bruce W, &

Sivilotti, Paolo AG. (2005). Using parse tree

validation to prevent SQL injection attacks.

Paper presented at the Proceedings of the 5th

international workshop on Software

engineering and middleware.

[9]. Cenzic’s. (2014). Application Vulnerability

Trends Report: 2014. Retrieved

29/09/2015, from https://www.info-point-

security.com/sites/default/files/cenzic-

vulnerability-report-2014.pdf

[10]. Chen, Jan-Min, & Wu, Chia-Lun. (2010).

An automated vulnerability scanner for

injection attack based on injection point.

Paper presented at the Computer Symposium

(ICS), 2010 International.

[11]. Cheon, Eun Hong, Huang, Zhongyue, &

Lee, Yon Sik. (2013). Preventing SQL

Injection Attack Based on Machine

Learning. International Journal of

Advancements in Computing Technology,

5(9).

[12]. Cho, Ying-Chiang, & Pan, Jen-Yi. (2015).

Design and Implementation of Website

Information Disclosure Assessment System.

PloS one, 10(3), e0117180.

[13]. Ciampa, Angelo, Visaggio, Corrado Aaron,

& Di Penta, Massimiliano. (2010). A

heuristic-based approach for detecting SQL-

injection vulnerabilities in Web applications.

Paper presented at the Proceedings of the

2010 ICSE Workshop on Software

Engineering for Secure Systems.

[14]. Cook, William R, & Rai, Siddhartha. (2005).

Safe query objects: statically typed objects

as remotely executable queries. Paper

presented at the Software Engineering, 2005.

ICSE 2005. Proceedings. 27th International

Conference on.

[15]. Djuric, Zoran. (2013). A black-box testing

tool for detecting SQL injection

vulnerabilities. Paper presented at the

Informatics and Applications (ICIA), 2013

Second International Conference on.

[16]. Halfond, William GJ, & Orso, Alessandro.

(2007). Detection and prevention of sql

http://www.info-point-security.com/sites/default/files/cenzic-vulnerability-report-2014.pdf
http://www.info-point-security.com/sites/default/files/cenzic-vulnerability-report-2014.pdf
http://www.info-point-security.com/sites/default/files/cenzic-vulnerability-report-2014.pdf

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 8, pp: 504-510 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0208504510 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 510

injection attacks Malware Detection (pp. 85-

109): Springer.

[17]. Huang, Shih-Kun, Lu, Han-Lin, Leong,

Wai-Meng, & Liu, Huan. (2013). Craxweb:

Automatic web application testing and attack

generation. Paper presented at 7th

International Conference on the Software

Security and Reliability(SERE), IEEE.

[18]. Kumar, Praveen. (2013). The multi-tier

architecture for developing secure website

with detection and prevention of sql-

injection attacks. International Journal of

Computer Applications, 62(9), 30-35.

[19]. Lawal, MA, Sultan, Abu Bakar Md, &

Shakiru, Ayanloye O. (2016). Systematic

Literature Review on SQL Injection Attack.

International Journal of Soft Computing,

11(1), 26-35.

[20]. Liban, Abdilahi, & Hilles, Shadi. (2014).

Enhancing Mysql Injector vulnerability

checker tool (Mysql Injector) using

inference binary search algorithm for blind

timing-based attack. Paper presented at the

Control and System Graduate Research

Colloquium (ICSGRC), 2014 IEEE 5th.

[21]. Liu, Anyi, Yuan, Yi, Wijesekera, Duminda,

& Stavrou, Angelos. (2009). SQLProb: a

proxy-based architecture towards preventing

SQL injection attacks. Paper presented at the

Proceedings of the 2009 ACM symposium

on Applied Computing.

[22]. Livshits, V Benjamin, & Lam, Monica S.

(2005). Finding Security Vulnerabilities in

Java Applications with Static Analysis.

Paper presented at the Usenix Security.

[23]. McClure, Russell A, & Kruger, Ingolf H.

(2005). SQL DOM: compile time checking

of dynamic SQL statements. Paper presented

at the Software Engineering, 2005. ICSE

2005. Proceedings. 27th International

Conference on.

[24]. Medhane, Munqath H Alattar SP. R-WASP:

Real Time-Web Application SQL Injection

Detector and Preventer.

